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We analyze the Lagrangian flow in a family of simple Gaussian scale-invariant
velocity ensembles that exhibit both spatial roughness and temporal correla-
tions. We argue that the behavior of the Lagrangian dispersion of pairs of fluid
particles in such models is determined by the scale dependence of the ratio
between the correlation time of velocity differences and the eddy turnover time.
For a non-trivial scale dependence, the asymptotic regimes of the dispersion
at small and large scales are described by the models with either rapidly
decorrelating or frozen velocities. In contrast to the decorrelated case, known
as the Kraichnan model and exhibiting Lagrangian flows with deterministic or
stochastic trajectories, fast separating or trapped together, the frozen model is
poorly understood. We examine the pair dispersion behavior in its simplest, one-
dimensional version, reinforcing analytic arguments by numerical analysis. The
collected information about the pair dispersion statistics in the limiting models
allows to partially predict the extent of different phases of the Lagrangian flow
in the model with time-correlated velocities.
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1. INTRODUCTION

The aim of this paper is to study the Lagrangian flow in d-dimensional
random velocity fields v(t, r) with a prescribed scale-invariant statistics. The
velocity ensembles that we shall consider mimic some essential properties of



realistic velocities in developed turbulence: their spatial roughness within a
large interval of scales and their temporal correlation. By definition, the
Lagrangian flow is described by the ordinary differential equation

dR
dt

=v(t, R). (1.1)

It determines the motion of hypothetical fluid particles or of small test
particles suspended in the fluid. One usually distinguishes between the
motion of a single particle, dominated by the velocity fluctuations on the
largest scale present (the so called ‘‘sweeping effects’’) and the evolution of
a relative separation of two particles. The latter is driven by the velocity
fluctuations on scales of the order of the inter-particle distance and it is the
main object of interest of the present paper. For larger groups of particles,
one should similarly distinguish the motion of their barycenter from the
relative motion of particles within the group. The latter is known to show
quite intricate behavior related to intermittency, see ref. 14, but it will not
be discussed here.

The separation r=RŒ − R between two fluid particles satisfies the
equation

dr

dt
=v(t, r+R(t)) − v(t, R(t)), (1.2)

where R(t) is a trajectory of one of the particles, a solution of Eq. (1.1)
starting at time zero at R=0, for example. Upon introduction of the so
called quasi-Lagrangian velocity,

vqL(t, r)=v(t, r+R(t)), (1.3)

i.e., velocity in the frame moving with a fixed fluid particle, we may rewrite
Eq. (1.2) as

dr

dt
=vqL(t, r) − vqL(t, 0) — DvqL(t, r). (1.4)

We shall be interested in the short- and long-time behaviors of the
Lagrangian particles in the statistical ensembles where typical velocities
are only Hölder continuous, the property expected in the limit of infinite
Reynolds numbers. (32) In such non-Lipschitz velocities, there is a problem
with solving Eqs. (1.1), (1.2), or (1.4). To avoid it, we shall first consider
noisy particle trajectories that solve the stochastic equation

dR=v(t, R) dt+`2o dW, (1.5)
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where W(t) is the Brownian motion in d dimensions mimicking the effect
of molecular diffusivity. Noisy trajectories form a well defined Markov
process even in velocity fields with poor regularity. Subsequently, the limit
o Q 0 will be performed in selected quantities. Other regularizations may be
considered. (12, 13) For example, the velocity field may be smeared at short
distances to mimic the effects of viscosity, the trajectory equations solved in
smeared velocities and the smearing removed subsequently. Such a proce-
dure may lead to a different limiting flow, see remarks at the end of
Section 2. For definiteness, we shall consider in the present paper only the
Lagrangian flows defined with the use of the Brownian noise regulariza-
tion, Physically, this corresponds to the small Prandtl number situations
where on small scales the molecular diffusion masks the viscous effects.
The simple velocity ensembles that we shall discuss are time-reversal
invariant. As a result, we shall not have to distinguish the forward and the
backward evolution of trajectories and will concentrate on the first one,
between, say, times zero and t.

One way to study the relative motion of pairs of fluid particles is to
follow the evolution of the pair dispersion, i.e., of the separation distance
r between two particles. Its statistics in a random flow may be described
by the velocity-averaged probability distribution P(t, r0; dr) of the time t
dispersion r, given its time zero value r0, in the limit when we remove the
(independent) noises of the Lagrangian trajectories. Another, related, test
of the relative motion of a pair of fluid particles is obtained by looking at
the exit time: (21, 6) the time t that the pair dispersion takes to evolve from r0

to r1. In particular, r1=2r0 corresponds to the doubling time of the pair
dispersion. The statistics of the exit times may be encoded in their velocity-
averaged distribution Q(r0, r1; dt) taken in the limit of vanishing noise.
Unlike P(t, r0; dr), the distribution Q(r0, r1; dt) may integrate to less than
1 with the missing mass determining the probability of the events when the
pair dispersion does not attain the value r1 in finite time. The exit time is
less influenced than the pair dispersion by small or large-distance cutoffs in
the velocity correlations, so preferable in numerical or experimental studies. (6)

Recently, a new insight into the intricate character of the Lagrangian
flow in turbulent velocities has been gained by analytic study of the
Kraichnan ensemble (27) of Gaussian velocities which are decorrelated in
time but exhibit scaling behavior in space, see refs. 5, 12, 23, 28, and 29.
Here, we try to find out how the presence of temporal correlations of
velocities influences the Lagrangian flow. We shall study the behavior of
trajectory separation in a simple generalization of the Kraichnan ensemble
of velocities where time correlations are reintroduced.

The paper is organized as follows. In Section 2 we recall the main
facts about the Lagrangian flow in the Kraichnan model, in particular the
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appearance of phases with very different trajectory behavior. Section 3
describes a Gaussian ensemble of homogeneous isotropic velocities with
temporal correlations, discussed in the past in refs. 2, 10, 15, and 18 and
similar in the spirit to non-isotropic shearing ensembles studied in refs. 3
and 4, see also ref. 30. We present a simple mean-field type analysis of the
particle separation when such an ensemble is used to model the quasi-
Lagrangian velocities. How the mean-field predictions may be substan-
tiated further by scaling arguments is the subject of Section 4. See also
refs. 16 and 17 for related rigorous results. Analytic arguments and conjec-
tures about the behavior of trajectories in a one-dimensional version of the
model with time-independent velocities are contained in Section 5. The
simple geometry of this case allows for an analytic treatment. The behavior
of the exit time statistics in velocity ensembles with long-time correlations
is briefly studied in Section 6. The question how the behavior of pair dis-
persion changes when the Gaussian ensemble is used to model the Eulerian
velocities is addressed in Section 7. In particular we show that in the one-
dimensional time-independent case, the sweeping by large eddies in the
Eulerian model speeds up the movement of a single Lagrangian particle,
but it localizes pairs of particles by reducing the growth of their dispersion.
Five Appendices contain more technical material. Some of the predictions
of the paper are checked in one dimension by numerical simulations.

2. LESSONS FROM THE KRAICHNAN MODEL

The Kraichnan ensemble of turbulent velocities, (27) is a Gaussian
ensemble with vanishing velocity 1-point function and with the 2-point
function

Ov i(t, r) v j(tŒ, rŒ)P=D1d(t − tŒ) F
e ik · (r − rŒ)

kd+t
L

P ij(k, ^)
dk

(2p)d , (2.1)

where kL=`k2+L−2 and P ij(k, ^)=1 − ^

d − 1 (d ij − kik j

k2 )+^
kik j

k2 , see ref. 14 and
references therein. There are two dimensionless parameters in the Kraichnan
ensemble: the exponent t > 0 and the compressibility degree 0 [ ^ [ 1. For
t [ 2, the velocities smeared in time are (almost surely) Hölder continuous
in space with any exponent smaller than t/2. For t > 2, they are Lipschitz
(or even more regular). The compressibility degree ^=0 corresponds to
incompressible velocities, ^=1 to gradients of a potential (in one dimen-
sion necessarily ^=1). The normalization constant D1 has dimension
length2 − t/time. The length L is the integral scale that sets the spatial cor-
relation length of velocities. If t < 2, it may be taken to infinity in the
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correlation functions involving only velocity differences v(t, r+r) − v(t, r)
— Dv(t, r). For t=2, this may still be done if D1 is rescaled when L Q ..

2.1. Possible Flow Behaviors

The Kraichnan ensemble may be used invariably to model Eulerian
or quasi-Lagrangian velocities as both ensembles coincide in this case. The
statistics of a single Lagrangian particle is that of a d-dimensional Brownian
motion with diffusivity that blows up when L Q .. The two-particle sepa-
ration depends only on velocity differences and its statistics has a non-
trivial L Q . limit whenever this holds for the velocity differences. The
pair-dispersion and the exit time distributions P(t, r0; dr) and Q(r0, r1; dt)
may be solved analytically in this limit. The exact solutions, that describes
also the short-distance asymptotics of the distributions at finite L, show
several dichotomic behaviors depending on the values of parameters of the
model. The first dichotomy, noticed in ref. 5, is between the

deterministic flow characterized by the property

lim
r0 Q 0

P(t, r0; dr)=d(r) dr (2.2)

which signals that the trajectories in a fixed velocity field are defined by
their initial position, and the

stochastic flow where

lim
r0 Q 0

P(t, r0; dr) is a measure with density. (2.3)

The limits of the probability distributions above (and below) should be
understood in weak sense, under integrals against test functions. The
behavior (2.3) means that infinitesimally close trajectories separate in a
finite time and indicates that the stochasticity introduced into the Lagran-
gian flow by coupling it to the noise, see Eq. (1.5), survives in the limit
o Q 0. The Lagrangian trajectories in a fixed velocity field are not deter-
mined by initial position but form instead a stochastic process. That this is
indeed what happens in the Kraichnan model was established rigorously in
ref. 28. We shall call the phenomenon spontaneous stochasticity.6

6 It was termed intrinsic stochasticity in ref. 12.

There are further dichotomic behaviors of the Lagrangian flow in the
Kraichnan model. We have chosen to characterize the other dichotomies
in terms of the small r0 behavior of the exit time distribution Q(r0, cr0; dt)

Lagrangian Dispersion in Gaussian Self-Similar Velocity Ensembles 647



with c ] 1 fixed, attaching to them more or less suggestive names. There is
a dichotomy between the

Lyapunov flow such that

lim
r0 Q 0

Q(r0, cr0; dt) is a measure with density, (2.4)

and the

Richardson flow where

lim
r0 Q 0

Q(r0, cr0; dt)=c(c) d(t) dt with c(c) > 0. (2.5)

This dichotomy distinguishes the flows in regular velocities where the
Lagrangian separation on short distances involves fixed time scales (like the
inverse Lyapunov exponent), from the ones in non-regular (non-Lipschitz)
velocities where the characteristic times of the Lagrangian separation
become very short on short scales.

Finally, the last two dichotomies that we want to single out charac-
terize the short distance behavior of the probability of infinite exit times.
They are between the

locally separating and locally trapping flow where for c > 1

lim
r0 Q 0

F Q(r0, cr0; dt) ˛=
<
ˇ 1, respectively, (2.6)

and

locally recurrent and locally transient flow where the same holds for
c < 1.

Roughly, with positive probability, close trajectories do not increase their
distance in locally trapping flows and do not approach each other in locally
transient ones.

2.2. Pair Dispersion

Due to the temporal decorrelation of the Kraichnan velocities, the
probability distributions P(t, r0; dr) constitute transition probabilities of a
Markov process r(t) that in the limit L Q . becomes a diffusion on a half-
line with the explicit generator

M=−D −

1 rt − a
“rra

“r for a=
d+t

1+^t
− 1, (2.7)
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where D −

1 is proportional to D1. Note that the symbol of M vanishes at
r=0. The different behavior of such diffusion for different values of t and
a has its origin in the singularity of M at r=0 which requires different
treatment in different regimes. Up to the change of variables x=r (2 − t)/2

casting the generator M into the form

M=11 −
t

2
22

DŒx1 − d
“xxd − 1

“x for d=2 11 −
1 − a
2 − t

2 (2.8)

and a time rescaling, the Markov process r(t) may be identified with the
well studied Bessel diffusion, (7) a natural interpolation between processes
describing the radial variable in the standard diffusion in integer dimen-
sions d. Various analytic formulae may be then directly carried from that
case to the present situation.

For t=2 corresponding to smooth velocities with velocity differences
linear in space, the particle dispersion probability distribution takes a log-
normal form: (9, 11)

P(t, r0; dr) 3 e
− 1

4D−
1t

(ln(r/r0) − lt)2

d ln r, (2.9)

where l=d − 4^

1+2^
D −

1 is the (biggest) Lyapunov exponent. It is easy to see that
in this case, limr0 Q 0 P(t, r0; dr)=d(r) dr, pointing to the deterministic
nature of the flow. Indeed, in velocities regular in space, trajectories are
uniquely determined by their initial position and very close fluid particles
separate little in a fixed time interval. Nevertheless, all moments of the pair
dispersion behave exponentially in time and grow in the chaotic regime
where l > 0, i.e., ^ < d/4, whereas sufficiently small (fractional) ones
decrease when l < 0, i.e., ^ > d/4. For the second moment, one obtains:

Or2(t)P=e (2l+4DŒ1) tr2
0. (2.10)

Similar behaviors persist at small times in the Kraichnan velocities with
t > 2 and finite L, see ref. 28.

The stochastic Lagrangian flow occurs in the non-Lipschitz version
with 0 < t < 2 of the Kraichnan model for weak compressibility ^ < d/t2.
In terms of the parameter b=1 − a

2 − t
=2 − d

2 that will be frequently used below,
the latter inequality means that b < 1. In this region, P(t, r0; dr)=
e−tM(r0, r) dr, where M is taken with ‘‘singular Neumann’’ or reflecting
boundary condition at r=0, see ref. 23, and

lim
r0 Q 0

P(t, r0; dr) 3 ra − t tb − 1e
−

r2 − t

(2 − t)2 DŒ1t dr. (2.11)
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Note the stretched-exponential form of the distribution. In particular, one
obtains for the second moment of the separation distance and large times:

Or2(t)P=O(t
2

2 − t ). (2.12)

This is the Kraichnan model version of the 1926 Richardson law (33) stating
that in developed turbulence the mean square dispersion grows like t3.
Note that the Richardson behavior is reproduced in the Kraichnan model
for t=4

3 . In the limit when the initial trajectory separation r0 Q 0, the
power law behavior (2.12) extends to the entire time domain and
Or2(t)P 3 t

2
2 − t.

In the non-Lipschitz strongly compressible version of the Kraichnan
model corresponding to 0 < t < 2 and ^ \ d/t2 (or b \ 1),

P(t, r0; dr)=P reg(t, r0; r) dr+p(r0; t) d(r) dr (2.13)

with the regular density P reg(t, r0; r)=e−tM(r0, r) where M is taken with
‘‘singular Dirichlet’’ or absorbing boundary condition at r=0, see ref. 23,
and with

p(r0; t)=1 − c 1b,
r2 − t

0

(2 − t)2 D −

1t
2 C(b)−1, (2.14)

where c(b, x) — >x
0 yb − 1e−y dy is the incomplete gamma-function. When

r0 Q 0 then the regular part of the distribution tends to 0, whereas p(r0; t)
tends to 1. We recover this way the deterministic behavior (2.2), with
trajectories in fixed velocity realizations determined by their initial position.
The presence of the singular term proportional to d(r) at finite r0 signals
that the trajectories starting at different initial positions coalesce with posi-
tive probability. (23) The time growth of the mean distance square dispersion
is different here:

Or2(t)P=O(r1 − a
0 t

2
2 − t

− b) (2.15)

with a logarithmic correction at ^=d/t2, i.e., at b=1.

2.3. Exit Time

In the Kraichnan model, the exit time distribution Q(r0, r1; dt) may
also be directly controlled using the kernels e−tMD(r0, r) where MD denotes
the generator M of (2.7) with the Dirichlet boundary condition at r1 (in
addition to the appropriate condition at the origin when r1 > r0). This is
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due to the Markov property of the stochastic process r(t). Since the exit
times have not been discussed in the context of the Kraichanan model, we
shall use the occasion to provide here and in Appendix A more details,
essentially translated form the Bessel diffusion case. The distribution of the
time of exit through r1 is given by the formula

Q(r0, r1; dt)=−“n(r1) e−tMD(r0, r) dt, (2.16)

where “n(r1)=± D −

1ra
“rrt − a|r=r1

plays the same role as the normal deriva-
tive in the classical potential theory. The sign is that of (r1 − r0). As
already mentioned above, this distribution does not have to be normalized.
The eventual missing mass corresponds to events where r(t) stays forever
in the intervals [0, r1) or (r1, .) or when it gets absorbed at the origin, see
below. We shall assign the infinite value of the exit time to such events. The
averages of the powers of the exit time t over the realizations with t < .

may be expressed by the kernels of the inverse powers of operator MD:

Otn1{t < .}P=F
.

0
tnQ(t; r0, r1) dt=−n! “n(r1)M

−n − 1
D (r0, r), (2.17)

where by 1{A} we denote the characteristic functions of the events satisfying
the condition A. In particular, the probability that the exit time is finite

O1{t < .}P=F
.

0
Q(r0, r1; dt)=−“n(r1)M

−1
D (r0, r). (2.18)

The expectations (2.17) may be obtained from the characteristic function

Oe iwt1{t < .}P=−“n(r1)(MD − iw)−1 (r0, r) (2.19)

involving the resolvent kernel of MD. We shall also consider the averages
conditioned on the exit times being finite:

Otn1{t < .}P

O1{t < .}P
— OtnPc,

Oe iwt1{t < .}P

O1{t < .}P
— Oe iwtPc. (2.20)

For t=2 and L=., i.e., in the smooth version of the Kraichnan
model with scaling, the kernel e−tMD(r0, r) is easily calculable by the image
method and leads via Eq. (2.16) to the expression for Q(r0, r1; dt). We give
the explicit formulae in Appendix A. Let us note here that Q(r0, r1; dt) has
a smooth density decaying exponentially for large t and t−1. It depends only
on r1

r0
so that the Lagrangian flow is Lyapunov in our terminology, see
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(2.4). The total mass of the exit time distribution is given by the simple
expression:

F
.

0
Q(r0, r1; dt)=˛1 if l ln(r1/r0) \ 0,

1r1

r0

2
l

DŒ1 if l ln(r1/r0) [ 0.
(2.21)

The missing mass corresponds for r1 > r0 and the negative Lyapunov
exponent to the events when r(t) stays forever in the open interval (0, r1)
(the pairs of trajectories remain always close). For r1 < r0 and the positive
Lyapunov exponent, it represents the events when r(t) stays forever in the
interval (r1, .) (the pairs of trajectories never come close). According to
the characterization from the previous subsection, see conditions (2.6), the
Lagrangian flow is Lyapunov, locally separating and locally transient if
l > 0, i.e., ^ < d/4 and it is locally trapping and locally recurrent if l < 0,
i.e., ^ > d/4. Finally, when l=0, i.e., ^=d/4, it is locally separating and
locally recurrent. Similar properties of the exit time distribution hold for
t > 2 and finite L asymptotically at short distances.

In the non-Lipschitz version of the Kraichnan model with 0 < t < 2
and L=., the resolvent kernel (MD − iw)−1 (r0, r) may still be easily cal-
culated in a closed form and it leads via Eq. (2.19) to a closed expression
for the Fourier transform of the exit time distribution Q(r0, r1; dt). Expli-
cit formulae may be found in Appendix A. The density of Q(r0, r1; dt)
appears to be a smooth function decaying exponentially in large t and t−1 if
r1 > r0 and as a power of t and exponentially in t−1 if r1 < r0. The exit
time distribution possesses the scaling property:

Q(m
1

2 − t r0, m
1

2 − tr1; d(mt))=Q(t; r0, r1), (2.22)

a direct consequence of the statistical scaling of the velocity differences.
Relation (2.22) implies the behavior (2.5) characterizing what we have
called the Richardson flows.

For r1 > r0 the total mass of the exit time distribution is

O1{t < .}P=˛1 for ^ <
d
t2 ,

1r0

r1

21 − a

for ^ \
d
t2 .

(2.23)

Hence the exit time is almost surely finite in the weakly compressible
regime whereas it is infinite with positive probability that depends only on
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r1
r0

in the strongly compressible regime where the process r(t) is absorbed at
the origin with the complementary probability. Such absorption corre-
sponds to the coalescence of pairs of trajectories. We conclude that the
Lagrangian flow is locally separating for ^ [ d/t2 and locally trapping for
^ > d/t2.

For r1 < r0,

O1{t < .}P=˛1r1

r0

2a − 1

for ^ <
d − 2

2t
+

1
2

,

1 for ^ \
d − 2

2t
+

1
2

.

(2.24)

If ^ < d − 2
2t

+1
2 (i.e., if a > 1), the process r(t) remains forever in the interval

(r1, .) with probability 1 − (r1
r0

)a − 1 > 0 whereas if ^ \ d − 2
2t

+1
2 , it exits

through r1 almost surely. The two situations correspond, respectively, to a
locally transient and a locally recurrent Lagrangian flow.

One may summarize the properties of the Lagrangian flow in the
Kraichnan model in the phase diagram, drawn in Fig. 1 for three dimen-
sions, with five phases that we list with their characteristics (assuming for
t > 2 finite L):

I. deterministic, Lyapunov, locally separating, locally transient, for
t > 2 and ^ < d/4;

II. deterministic, Lyapunov, locally trapping, locally recurrent, for
t > 2 and ^ > d/4;

III. stochastic, Richardson, locally separating, locally transient, for
0 < t < 2 and ^ < d − 2

2t
+1

2 ;

2

ξ

p10

V

IV

II

III

I

Fig. 1. Phase diagram of the Lagrangian flow for the three-dimensional Kraichnan model.
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IV. stochastic, Richardson, locally separating, locally recurrent, for
0 < t < 2 and d − 2

2t
+1

2 < ^ < d/t2 ;

V. deterministic, Richardson, locally trapping, locally recurrent, for
0 < t < 2 and d/t2 < ^.

These phases were essentially enumerated in ref. 23 (with little stress
put on the difference between phase III and IV). The characterization
described above is closely related to the description of the phase diagram in
ref. 28, see also ref. 12. The notable difference is that, in order to charac-
terize the phases in the non-Lipschitz case, refs. 12 and 28 used the dicho-
tomic behaviors of the time of exit through r1 in two limits: when r1 Q 0
with r0 kept constant and when r0 Q 0 with r1 kept constant. Such behav-
iors enter the standard classification (19, 8) of the one-dimensional diffusion
r(t) on the half-line [0, .[ with r=0 being, for t > 2, a natural boundary
and, for t < 2, an entrance boundary in the weakly compressible phase III,
a regular boundary in the intermediate phase IV and an exit boundary in
the strongly compressible phase V. The use in the present paper of the
small r0 behavior of the exit time distribution at fixed r1

r0
in order to

characterize the phases was motivated by the fact that such behaviors were
both more amenable to analytic arguments in the presence of temporal
correlations of velocities and more accessible to numerical simulations.

As noticed in ref. 12, see also ref. 29, the solution for the distribution
P(t, r0; dr) corresponding to the singular Dirichlet boundary condition for
M and coalescent trajectories, which pertains only to phase V if the flow is
defined by adding and removing small noise, sets in already in region IV if
we add no noise but first smoothen out the velocity fields at short distances
and subsequently remove the smoothing. Physically, the first procedure
corresponds to the vanishing Prandtl and the second one to the infinite
Prandtl numbers. For d − 2

2t
+1

2 < ^ < d
t2 and well tuned Prandtl numbers, one

may also obtain intermediate solutions that correspond to a ‘‘sticky’’
behavior of fluid particles. (24) The different limiting procedures give then
rise to different boundary conditions that may be imposed on the generator
M of Eq. (2.7) in the situation when r=0 is a regular boundary. (8, 13, 19)

3. GAUSSIAN VELOCITY ENSEMBLES WITH TEMPORAL

CORRELATIONS

The temporal decorrelation of the Kraichnan velocities is a simplifying
feature that is quite unphysical since realistic turbulent velocities are corre-
lated at different times. In the present paper we attempt to study the effect
of temporal correlation of velocities on the behavior of the dispersion of a
pair of particles in simplest ensembles of velocities with such correlations
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built in. More specifically, we shall consider the Gaussian ensembles of
d-dimensional velocities with mean zero and covariance

Ov i(t, r) v j(tŒ, rŒ)P=D2 F e−|t − tŒ| D3 k2b
L

e ik · (r − rŒ)

kd+2a
L

P ij(k, ^)
dk

(2p)d . (3.1)

There are three parameters in (3.1) not related to the choice of units: the
spatial Hölder exponent a, that we shall restrict to the interval (0, 1),
the temporal exponent b taken positive, and the compressibility degree
^ ¥ [0, 1]. Besides, there are three dimensionful parameters: D2 of dimen-
sion length2(1 − a)/time2, D3 of dimension length2b/time, and the integral
length scale L. Similarly as in the Kraichnan ensemble, L may be taken to
infinity for correlation functions of differences of velocities Dv(t, r) whose
statistics becomes scale invariant in this limit. The correlation time ycr(r) of
the velocity differences in ensembles given by Eq. (3.1) is equal to D−1

3 r2b

whereas the variance O(Dv(t, r))2P — S(r)2 behaves as D2r2a.
We shall be looking at the statistics of the 2-particle separation either

using Eq. (1.2) with the ensemble (3.1) governing the Eulerian velocities, or
using Eq. (1.4) with the ensemble (3.1) describing the quasi-Lagrangian
velocities. It should be stressed that the two choices lead to two different
models of Lagrangian flow. They exhibit different behaviors even for
incompressible velocities where the equal-time velocity statistics of the
Eulerian and quasi-Lagrangian velocities coincide. This should be con-
trasted with the situation in the Kraichnan model where the Eulerian and
the quasi-Lagrangian velocities had the same all-time statistics so that it
did not matter which one was modeled by the Gaussian ensemble (2.1).
That the situation is different in the presence of temporal correlations is
due to the manner in which sweeping by large scale eddies is taken into
account. The 2-particle separation r involves only differences DvqL(t, r) of
the quasi-Lagrangian velocities, see (1.4). The statistics of such differences
has a regular L Q . limit if we use the Gaussian ensemble (3.1) for the
quasi-Lagrangian velocities. In this case the sweeping by scale L eddies
does not effect the pair dispersion. On the other hand, r cannot be
expressed in terms of the Eulerian velocity differences only, due to the
dependence on the reference trajectory R(t), see (1.2). As a result, if we
substitute the ensemble (3.1) for the Eulerian velocities, the dispersion sta-
tistics is still effected by the scale L sweeping and behaves in a singular way
in the limit L Q .. This singularity modifies also the short time behavior of
the pair dispersion at fixed L in certain regimes, as we shall discuss below.
The use of the synthetic ensemble (3.1) to describe turbulent velocities is in
any case an approximation. It seems to render better the Lagrangian fea-
tures of real turbulence if used to model the quasi-Lagrangian velocities.
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In this case the large scale sweeping influences only the single particle sta-
tistics, but not the pair dispersion. We shall limit ourselves to this situation
throughout most of this paper, dropping the subscript ‘‘qL’’ on the veloci-
ties. The exception is Section 7 where we discuss what happens when the
Gaussian ensemble (3.1) is used to model the Eulerian velocities.

The first idea about the Lagrangian flow in the ensembles (3.1) of
quasi-Lagrangian velocities may be gained by comparing the correlation
time ycr(r) to the eddy turnover time ye(r)=D−1/2

2 r1 − a 3 r/S(r). On
the line a+2b=1 which, in particular, contains the Kolmogorov point
a=b=1

3 (see Fig. 2), both times have the same scale dependence. For
a+2b < 1 (domain C on Fig. 2), ycr becomes much shorter than ye at large
scales and much longer at small ones. We shall see that in this domain
of parameters the pair dispersion should be described at long scales (for
L=.) by the Kraichnan model with rapidly decorrelating velocities and at
short scales by a model with velocities independent of time (frozen). For
a+2b > 1 (domains A and B on Fig. 2), the relation between the correla-
tion times is reversed and we could expect that the frozen model controls
the large scale dispersion and the decorrelated one governs the short scale
behavior. A similar picture underlined the phase diagram in a simple family
of scale-invariant shear flows. (3, 4) We shall study the asymptotics of the
Lagrangian flow using scale transformations. Such transformations induce
a flow in the plane of dimensional parameters of the model whose asymp-
totics is controlled by fixed points, as in the field theory renormalization
group. (1) The perturbative renormalization group has been previously used

1

β

α10

A 

B

C

1_
2

Fig. 2. Phase diagram of the three different regimes of Lagrangian flow in the time-corre-
lated velocities discussed here. The exponent a is the spatial Hölder exponent and the expo-
nent b controls the behavior of correlation time as a function of scale.
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in ref. 2 to analyze the related scalar advection problem in the family (3.1)
of velocity ensembles around (a, b)=(−1, 1) and there is some overlap of
those results with our conclusions. The much heavier analysis of ref. 2 was
concentrated, however, on the aspects of advection related to finer details
of the Lagrangian flow, see also ref. 10. Our point is that the analysis of the
Lagrangian dispersion may be performed, at least to a certain extent, in a
straightforward and nonperturbative way.

The Kraichnan and the frozen model may be viewed as special limiting
cases of the Gaussian velocity ensembles (3.1). The first one, with t=
2(a+b), is obtained when D2, D3 Q . with 2D2

D3
— D1 kept constant as a

consequence of the convergence

D3k2b
L e−|t| D3k2b

L
||0D3 Q .

2d(t). (3.2)

At L=., existence of the limit for the correlation functions of Dv requires
that t < 2, i.e., that a+b < 1. Note that the convergence is fast at large
wave number k, i.e., at small distances, and for long times, but it becomes
slow for short times and, if L=., at large distances. The frozen model is
obtained by taking D3 Q 0 with D2=const. In this case,

e−D3 |t| k2b
L
||0D3 Q 0 1 (3.3)

but the convergence becomes slow at large k, i.e., at small distances, and
for long times.

Using the evolution equation (1.4) for the trajectory separation vector,
we obtain for the mean rate of growth of the square of pair dispersion:

d
dt

Or2(t)P=2 F
t

0
ODv(t, r(t)) · Dv(s, r(s))P ds. (3.4)

Let us start by a naive mean-field-type approximate evaluation of the right
hand side in the limit when r0 Q 0. Such an evaluation should render
correctly the behavior of Or2(t)P in the stochastic regime. It is obtained by
rewriting Eq. (3.4) as

d
dt

Or2P=2TO(Dv)2 (t, r)P, (3.5)

where

T=
> t

0 ODv(t, r(t)) · Dv(s, r(s))P ds
O(Dv)2 (t, r(t))P

, (3.6)
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has, if smaller than t, an interpretation of the correlation time of the
Lagrangian velocity difference Dv(t, r(t)). We may try to close Eq. (3.5) by
assuming that T depends on the mean separation distance Or2P1/2 the same
way as the correlation time ycr(r) on r if ycr(r) is smaller than t or as t
otherwise:

T % min{O(Or2Pb), t}. (3.7)

Different domains in the space of parameters correspond to different
choices of the minimal value (3.7) for T. As for the other term on the right
hand side of relation (3.5), we shall again ignore the velocity dependence of
r(t) putting

O(Dv)2P % O(Or2Pa). (3.8)

Using the above approximations for long times and L=., one obtains
from Eq. (3.5):

Or2(t)P % O(t
2

1 − a ) for a+2b \ 1 (domains A and B), (3.9)

Or2(t)P % O(t
1

1 − a − b ) for a+2b [ 1 (domain C). (3.10)

In the same way, we may estimate the short-time behavior in the limit
r0 Q 0 obtaining

Or2(t)P % O(t
1

1 − a − b ) for a+b < 1 [ a+2b (domain B), (3.11)

Or2(t)P % O(t
2

1 − a ) for a+2b [ 1 (domain C). (3.12)

Note that, in agreement with (3.7), it is the smaller exponent that is chosen
for large times and the bigger one for short times, a manifestation of a
tendency of close trajectories to stay close. The region a+b \ 1 (domain A
in Fig. 2) which escapes the short-time estimates has been rigorously
analyzed with the Gaussian ensemble (3.1) used to model the Eulerian
velocities (18) and was conjectured to correspond to deterministic trajec-
tories. We expect that also in the quasi-Lagrangian model the pair disper-
sion will concentrate in domain A at r=0 when r0 Q 0. This is consistent
with the divergence of the predicted power in the short-time Richardson
law (3.12) when a+b approaches 1 from below (i.e., from the domain B in
Fig. 2). A similar divergence occurs in the weakly compressible Kraichnan
model when we approach the Lipschitz regime t > 2 from the non-
Lipschitz one t < 2. It signals there the passage from the power law to the
exponential separation (2.10) of trajectories.
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4. SCALING ARGUMENTS

The main aim of this note is to substantiate further the above conclu-
sions based on the naive estimates (3.7) and (3.8). We shall also acquire an
insight into the behavior of general moments of the pair dispersion and of
the exit time and into the extent of the different Lagrangian flow regimes in
the ensembles given by Eq. (3.1). In the study of the long- and short-time
behavior of trajectories, it is convenient to consider their rescaled versions
Rm(t)=m−sR(mt) for appropriately chosen s. Since

dRm

dt
=vm(t, Rm), (4.1)

for the rescaled velocity vm(t, r)=m1 − sv(mt, msr), the path Rm(t) is a
Lagrangian trajectory for vm. There are special cases when the rescaled
velocity differences have in the L Q . limit the same distribution as the
original ones for an appropriate (and unique) choice of s. This happens for
s= 1

1 − a
both on the line a+2b=1 and in the frozen model and for s= 1

2 − t

in the Kraichnan ensemble. We infer that in those cases the pair dispersion
distribution P and the exit time one Q are scale-invariant:

P(mt, msr0; d(msr))=P(t, r0; dr),

Q(msr0, msr1; d(mt))=Q(r0, r1; dt).
(4.2)

In particular, in the stochastic regime, the pair dispersion moments
Or(t)nP, if finite in the r0 Q 0 limit, behave as O(tns) for long times and
become proportional to tns for all times when r0 Q 0. These conclusions fail
in the deterministic regime, as we have already noticed in the Kraichnan
model, see Eq. (2.15). In all regimes, the exit time moments Otn1{t < .}P (if
finite) are proportional to rn/s

0 if r1
r0

— c is kept constant.
Out of the line a+2b=1, the scale invariance of the Lagrangian dis-

persion is broken but in a predictable way, as we shall see. The crucial
observation is that the rescaled velocities vm(t, r) are distributed with the
2-point function (3.1) with Di replaced by Di, m and L by Lm, where

D2, m=m2[1 − (1 − a) s]D2, D3, m=m1 − 2bsD3, Lm=m−sL. (4.3)

For m tending to infinity or to zero (i.e., when exploring the long-time or
the short-time behavior of the particle separation), we may choose s so
that the distribution of the rescaled velocity differences at L=. tends to
the Kraichnan or to the frozen model one (with the notable exception of
the m Q 0 limit in domain A).
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Consider first m Q . at L=.. Taking s= 1
2(1 − a − b) fixes the ratio 2D2, m

D3, m

with Di, m Q . if a+b > 1 (domain A in Fig. 2) or if a+2b < 1 (domain C
in Fig. 2). The latter case leads to a non-singular Kraichnan ensemble of
velocity differences with t=2(a+b) whereas the former one does not (it
would correspond to t > 2, L=.). We may then expect that

lim
m Q .

P(mt, msr0; d(msr))=PKr(t, r0; dr)

lim
m Q .

Q(msr0, msr1; d(mt))=QKr(r0, r1; dt)
ˇ

for s=
1

2(1 − a − b)
and a+2b < 1 (4.4)

where PKr and QKr pertain to the Kraichnan model with t=2(a+b). This
is indeed consistent with the scaling properties of the Kraichnan model
dispersion.

Taking s= 1
1 − a

fixes D2, m with D3, m Q 0 if a+2b > 1 (domains A and B
in Fig. 2). We then expect that

lim
m Q .

P(mt, msr0; d(msr))=P fr(t, r0; dr)

lim
m Q .

Q(msr0, msr1; d(mt))=Q fr(r0, r1; dt)
ˇ

for s=
1

1 − a
and a+2b > 1, (4.5)

where P fr and Q fr stand for the distributions of the frozen velocity model
with Hölder exponent a. Note again the consistency with the scaling prop-
erties of the Lagrangian dispersion in the frozen model.

Inquiring about the short-time asymptotics of the trajectory dispersion
reverses the asymptotics. We should then have

lim
m Q 0

P(mt, msr0; d(msr))=P fr(t, r0; dr)

lim
m Q 0

Q(msr0, msr1; d(mt))=Q fr(r0, r1; dt)
ˇ

for s=
1

1 − a
and a+2b < 1 (4.6)
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(i.e., in domain C in Fig. 2) with the same value of the Hölder exponent a,
and

lim
m Q 0

P(mt, msr0; d(msr))=PKr(t, r0; dr)

lim
m Q 0

Q(msr0, msr1; d(mt))=QKr(r0, r1; dt)
ˇ

for s=
1

2(1 − a − b)
and ˛a+b < 1,

a+2b > 1
(4.7)

(i.e., in domain B in Fig. 2) with t=2(a+b) for the Kraichnan model.
Again, this is consistent with the scaling of the limiting distributions. In
summary, the scale invariance of the statistics of the pair dispersion and of
the exit time, although broken away from the a+2b=1 line, should be
restored at long and short times.

It has to be stressed that the relations (4.4) to (4.7) are conjectural.
The distributions P and Q are complicated nonlinear functionals of the
quasi-Lagrangian velocity statistics and the conjectured relations assume
their continuity in an appropriate topology, which is not obvious. In par-
ticular, since the convergence of the rescaled velocity covariances to the one
of the Kraichnan model is very slow at long distances, there is a potential
threat for the corresponding convergence of the rescaled distributions
P(t, r0; dr) and Q(r0, r1; dt) with r1 < r0 coming from the contribution of
trajectories that venture far apart, if such contributions are important.
Similarly, the slow convergence to the frozen model at short distances
could create problems for the corresponding convergence of the rescaled
pair dispersion and exit time distributions, for the latter if r1 > r0. Whether
such effects invalidate some of the conclusions (4.4) to (4.7) could be, in
principle, studied in perturbation theory around the Kraichnan or frozen
model. The question of the convergence of rescaled dispersion distribution
to the Kraichan model one has been recently rigorously studied in refs. 16
and 17. We shall further discuss the non-uniformity of the convergence of
the exit time distributions to that of the frozen model in Section 6.

An important question concerns the phase diagram of the Lagrangian
flow for the model (3.1) of quasi-Lagrangian velocities. As mentioned
above, domain A is expected to correspond to the deterministic Lagrangian
flow. The rate of separation of close trajectories in this domain (Lyapunov
or Richardson flow? locally separating or trapping? locally recurrent or
transient?) is also an open problem. Inside domains B and C, we may try
to use the conjectured convergence (4.4) to (4.7) of the rescaled pair
dispersion and time exit distributions to characterize the nature of the
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Lagrangian flow. This will require even more care since some uniformity of
the limits will be needed.

First, we may argue that, inside domains B and C, weak compressibil-
ity ^ < d

4(a+b)2 implies that the Lagrangian flow is stochastic. The argument
assumes that the dichotomy ‘‘deterministic versus stochastic’’ may be still
characterized as in Section 2, i.e., by the behavior of P(t, r0; dr) in the
limit r0 Q 0. It goes as follows. Suppose that the relation (2.2) holds at
some point inside B or C (for all t). Then, obviously, also

lim
r0 Q 0

P(mt, msr0; d(msr))=d(r) dr (4.8)

for all m. We expect the convergence (4.4) in domain C and (4.7) in
domain B, both resulting in the Kraichnan model distributions, to be
uniform at short distances and hence to commute with the r0 Q 0 limit.
We may then infer from Eq. (4.8) that (2.2) holds also for the limiting
Kraichnan distribution so that ^ \ d/t2 where t=2(a+b), which implies
the assertion.

The analogous argument may be applied when

lim
r0 Q 0

F Q(r0, cr0; dt)= lim
r0 Q 0

F Q(msr0, mscr0; d(mt))=1 (4.9)

leading to the predictions that inside the domains B and C, the Lagrangian
flow is locally trapping if ^ \ d

4(a+b)2 and locally transient if ^ < d − 2
4(a+b)+

1
2 .

The first claim seems somewhat more trustable since it does not involve
large separations where the convergence to the Kraichnan ensemble is
slowed down. Both require additionally that no mass of the exit time dis-
tribution escapes to infinity during the m-limits (4.4) and (4.7). This should
not pose a problem since convergence to the Kraichnan model becomes
very fast at long times.

In the stochastic regime, the convergence (4.4) and (4.7) should imply
for the (positive) pair dispersion moments the behavior

Orn(t)P=O(t
n

2(1 − a − b) ) (4.10)

for long times in domain C and for r0 Q 0 and short times in domain B, in
agreement with the naive mean-field results (3.10) and (3.11). As for the
behavior of the moments of the exit time through cr0, the relations (4.7)
and (4.4) should imply that

Otn1{t < .}P=O(r2n(1 − a − b)
0 ) (4.11)
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in domain B for small r0 and in domain C for large ones, irrespectively
of the character of the Lagrangian flow. Similarly, we should obtain in
domain B the convergence

lim
m Q 0

F f(t) Q(msr0, mscr0; dt)=f(0) F QKr(r0, r1; dt) (4.12)

characteristic of the Richardson flow in our terminology.
Similar use of the conjectured convergences (4.5) and (4.6) to the

frozen model distributions in order to argue about the Lagrangian flow
dichotomies and the evolution of dispersion and exit times moments poses
two problems. First is the poor knowledge of the flow behavior in the
frozen model, see, however, Section 5. Second, even more serious one, is
the non-uniform nature of the convergence that becomes slow at small dis-
tances and long times. Nevertheless. it is still plausible that the convergence
(4.5) is uniform enough as to imply that

Orn(t)P=O(t
n

(1 − a) ) (4.13)

for long times and for sufficiently high n in the stochastic regime in
domains A and B. Similarly, relations (4.5) and (4.6) may still imply that
for sufficiently negative moments,

OtnP=O(rn(1 − a)
0 ) (4.14)

in domains A and B for large r0 and in domain C for small ones, see
Section 6. The same way, the convergence (4.12) should still hold in
domain C for test functions f decaying fast at infinity and QKr replaced
by Q fr.

Summarizing, we predict, with various level of confidence, that the
(zero Prandtl number) Lagrangian flow in the quasi-Lagrangian velocity
ensemble (3.1) is

deterministic
in domain A

stochastic, Richardson, locally transient
in domains B and C for ^ < d − 2

4(a+b)+
1
2 ,

stochastic, Richardson
in domains B and C for d − 2

4(a+b)+
1
2 [ ^ < d

4(a+b)2 ,

Richardson, locally trapping
in domains B and C for ^ \ d

4(a+b)2 .
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The degree of confidence of the predictions depends on which of relations
(4.4) to (4.7) was used in the argument and with what uniformity assump-
tions. The predictions are consistent with the intuition that increase of the
compressibility degree ^ enhances the trapping of the fluid particles. It will
be interesting to confirm (or infirm) them by further analytic arguments
and by numerical simulations. Note that, in particular, we expect that in
domains B and C the incompressible Lagrangian flow is stochastic,
Richardson and locally transient, and that, if the dimension d \ 4, it stays
such, whatever compressibility.

5. ONE-DIMENSIONAL FROZEN ENSEMBLE

The frozen model was left out from the discussion of the phase
diagram in the last section. Our arguments were based mainly on the con-
vergence of the rescaled velocity ensemble (3.1) to the Kraichnan model
and such convergence is, of course, absent for the frozen model. One may
expect appearance of discontinuity in the character of the Lagrangian flow
in the frozen model limit D3 Q 0 which is very non-uniform at short dis-
tances and long times, leading to a strong enhancement of trapping. This
effect will be analyzed in the next section. Here we shall try to find out
what happens in the frozen velocities which, in general, are hard to analyze.
One case where some analytic results may be obtained due to the very
simple geometry of the flow is the one-dimensional Gaussian model where
the Lagrangian particles slide down the potential wells, getting stuck at
their bottom, and where the flow preserves the order of particles. In par-
ticular, when the spatial Hölder exponent a=1

2 , the velocity 2-point func-
tion becomes

Ov(x) v(y)P=F
e ik(x − y)

k2+L−2

dk
2p

=
1
2

Le−|x − y|/L, (5.1)

where we have set D2=1 (what may be always achieved by rescaling
v W `D2 v). The additional simplifying feature of this case, studied already
in ref. 34, is that v(x) forms a stationary Markov (Ornstein–Uhlenbeck)
process with the generator

L=−
1
2

d2

dv2+
v
L

d
dv

(5.2)
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corresponding to the Focker–Planck harmonic oscillator Hamiltonian

H=e
− v2

2LLe
v2

2L=−
1
2

d2

dv2+
v2

2L2 −
1

2L
. (5.3)

The velocity v(x) with fixed x is distributed according to the invariant
measure of the process

dn(v)=
1

`pL
e

− v2

L dv. (5.4)

The transition probabilities of the process are

p(t, v0; dv)=e−tL(v0, v) dv=
1

`pL(1 − e − 2t/L)
e

−
(e − t/Lv0 − v)2

L(1 − e − 2t/L) dv. (5.5)

In the limit L Q ., the velocity difference Dv(x)=v(x) − v(0) becomes the
one-dimensional two-sided Brownian motion w(x). The quasi-Lagrangian
Eq. (1.4) for the trajectory separation takes then the form of the steepest
descent equation

dr

dt
=w(r)=−

d
dr

f(r). (5.6)

in the potential f(x)=−>x
0 w(y) dy. The solution r(t) slides to the bottom

of the potential well in which the initial point r0=r(0) is situated, i.e., to
the closest zero r+ of w(r) to the right of r0 if w(r0) > 0 or r− to the left
of r0 if w(r0) < 0. The only difference with the case of smooth potential
with wells approximately quadratic around typical minima, is that, as we
show below, the solution will arrive to the bottom of the well in a finite
rather than infinite time. This is due to the roughness of the Brownian
motion. After arriving at the bottom, the solution will stay locked there in
subsequent times.

We may restrict ourselves to the case r0 > 0. Suppose also that
w(r0) > 0. The first value r+ to the right of r0 such that w(r+)=0 is finite
with probability one. The time t+ that the solution r(t) of Eq. (5.6) starting
at r0 at time zero takes to reach r+ is

t+=F
r+

r0

dr

w(r)
. (5.7)
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Let us compute the expectation Ot+ 1{w(r0) > 0, r+ [ r2}P of times t+ over the
Brownian paths w(r) such that w(r0) > 0 and r+ [ r2 for certain r2 > r0.
It is equal to

F
r2

r0

dr F
.

0
e−

w2
0

2r0
dw0

`2pr0
F

.

0
(e−

(w0 − w)2

2(r − r0) − e−
(w0+w)2

2(r − r0) )
dw

`2p(r − r0) w

× F
.

0
e−

(w+w2)2

2(r2 − r)
2 dw2

`2p(r2 − r)
. (5.8)

The origin of this formula is straightforward. The probability that w(r0)

belongs to [w0, w0+dw0] is e−
w0

2

2r0
dw0

`2pr0
. The one that w(r) belongs to

[w, w+dw] without passing through zero between r0 and r is (e−
(w0 − w)2

2(r − r0) −

e−
(w0+w)2

2(r − r0)) dw
`2p(r − r0)

, given that w(r0)=w0, (it is expressed by the heat kernel
with the Dirichlet condition at w=0). Finally, the last integral on the right
hand side of (5.8) is equal to the probability that the Brownian trajectory
crosses zero between r and r2, given that w(r)=w. In Appendix B we
show that

Ot+ 1{w(r0) > 0, r+ [ r2}P [ C+r1/2
0 ln

r2

r0
, (5.9)

where C+ is a dimensionless constant. This proves that the time t+ is almost
surely finite although the unrestricted mean Ot+ 1{w(r0) > 0}P, given by the
r2 Q . limit of (5.8) under which the last integral on the right hand side
tends to one, diverges. The divergence is due to the contribution of the
Brownian paths that travel far before falling back to zero. In the Ornstein–
Uhlenbeck process with L < ., the weight of such paths is suppressed and
it is not difficult to show that Ot+ 1{w(r0) > 0}P is finite then.

Similarly, let w(r0) < 0 and 0 [ r− < r0 be the first value to the left of
r0 such that w(r− )=0. The time t− that the solution r(t) of Eq. (5.6)
starting at r0 at time zero takes to reach r− is given by Eq. (5.7) with t+

replaced by t− and r+ by r− . The expectation value Ot− 1{w(r0) < 0}P is given
by

− F
r0

0
dr F

0

−.

e
− w2

2r
dw

`2pr w
F

0

−.

(e
−

(w − w0)2

2(r0 − r) − e
−

(w+w0)2

2(r0 − r) )
dw0

`2p(r0 − r)
(5.10)
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which is easily seen to be finite, e.g., by bounding the last integral by
`

2
p(r0 − r) |w|. We infer that

Ot− 1{w(r0) < 0}P=C− r1/2
0 , (5.11)

where C− is another dimensionless constant.

5.1. Exit Time

As for the exit time that the process r(t) takes to grow from r0 to
r1 > r0, it is finite if and only if r(t) is not stuck at a zero r± < r1 of w(r),
i.e., if w is positive on the interval [r0, r1). It is then given by the formula

t=F
r1

r0

dr

w(r)
. (5.12)

The probability that t < . is given by

O1{t < .}P=F
.

0
e

−
w2

0
2r0

dw0

`2pr0

F
.

0
(e

−
(w0 − w1)2

2(r1 − r0) − e
−

(w0+w1)2

2(r1 − r0) )
dw1

`2p(r1 − r0)
. (5.13)

Note that the last expression depends only on r1
r0

, is smaller than 1/2 and
tends to zero when r0 Q 0 with r1 fixed. With the complementary proba-
bility, the solution r(t) starting from r0 > 0 will never reach r1, i.e., the exit
time t is infinite. One may express similarly the averages of positive powers
of the exit time constraint to be finite. The explicit expression may be
found in Appendix C. They are finite and take the scaling form

Otn1{t < .}P=Cnyn
e (5.14)

where Cn are dimensionless constants depending on the ratio c=r1
r0

> 1 and
ye=(r0/D2)1/2 is the eddy turnover time at scale r0 (recall that we have set
D2=1 above).

The bounds (C.2) for the moments Otn1{t < .}P proven in Appendix C,
which respect the above scaling, imply that the characteristic function
Oe iwt 1{t < .}P is entire in w and that the large t decay of the density of the
distribution Q(r0, r1; dt) is at least Gaussian. Due to Eq. (5.12), the char-
acteristic function may be expressed by the path integral

Oe iwt1{t < .}P=
1
N

F
.

0
e

−
w2

0
2r0

dw0

`2pr0

F e
>r1

r0
( iw

w(r)
− 1

2
ẇ2(r)) dr

Dw (5.15)
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over the paths [r0, r1] ¦ r W w(r) ¥ (0, .) such that w(r0)=w0, with
N being an appropriate normalization factor. The expression permits to
evaluate the large |w|-behavior along the positive imaginary axis of w

by the semi-classical calculation. The extremal trajectory w(r) describes a
motion of a unit mass particle climbing up in the potential − 1

w until a total
stop. It satisfies the equation

sin j0

cos3 j0
(j+sin j cos j)=

r1

r0
−

r

r0
(5.16)

for cos2 j= w(r)
w(r1) , cos2 j0=w(r0)

w(r1) and j between zero and j0 < p

2 . In particu-
lar, j0 is determined by Eq. (5.16) with j=j0 and r=r0. It depends only
on the ratio r1

r0
. The action of the classical trajectory is S0=|w|2/3 r1/3

0 s0

with a dimensionless constant s0=3j0 sin1/3 j0

21/3 cos j0
growing with the r1

r0
. The decay

’ e−S0 of the characteristic function along the positive imaginary axis cor-
responds to the small t behavior ’ e− 4

27
r0 s3

0 t − 2
=e− 4

27
s3

0(ye/t)2
of the density of

the exit time distribution Q(r0, r1; dt) (up to powers of t). One could
expect that for short times the trajectories move almost ballistically:

r(t) 4 r0+w(r0) t (5.17)

which would give t 4
r1 − r0
w(r0) and a short time tale ’ e−

(r1 − r0)2

2r0
t − 2

of the exit
time density function. This reproduces well the power of t in the exponen-
tial but not the coefficient. The latter, divided by r0, agrees only to the
order (r1

r0
− 1)2 with the correct expression 4

27 s3
0.

For w on the imaginary axis, the path-integral on the right hand side
of Eq. (5.15) may be re-expressed in the operator language via the
Feynman–Kac formula. Using also the invariance of the Brownian motion
under the scale transformations w(x) W |w|−1 w(|w|2 x), we obtain the
identity

Oe iwt1{t < .}P=F
.

0
e

−
w2

0
2 |w|2 r0

dw0

`2pr0 |w|
F

.

0
e−|w|2 (r1 − r0) K± (w0, w1) dw1,

(5.18)

where the operator

K±=−
1
2

d2

dw2 ±
1
w

(5.19)

on the interval [0, .) is a 1-dimensional Schrödinger operator with
Dirichlet boundary condition at zero. The signs pertain to the positive or
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negative imaginary w-axis and result in a repulsive or an attractive poten-
tial, respectively. An explicit expression for the kernel of the exponential
of K− , see Appendix D, shows the growth of the characteristic function for
w=−i |w| dominated by the lowest bound state contribution ’ e−|w|2 (r1 − r0) E0

with E0=− 1
2 . This implies the decay ’ e− 1

(r1 − r0)
t2
=e− 1

c − 1
(t/ye(r0))2

of the
density of Q(r0, r1; dt) for large t.

The above analytic predictions may be used to validate the numerical
method to be applied later for the cases a ] 1/2, where such rigorous
results are not available. The velocity field is generated by using a straight-
forward Fourier method, i.e., generating the Fourier modes by a standard
Gaussian random number generator and transforming back to real space
by Fast Fourier Transform. The resolution which we used was 220. The
initial separation is set at 20,000 and we measure the distribution of the
time taken to reach 5 times the initial separation. The curve is shown in
Fig. 3. The agreement with the superposed predictions indicates that the
choice of the resolution and the initial separation are appropriate to avoid
contamination by periodicity and/or discretization effects.

The time in which r(t) decreases from r0 to a positive value r1 < r0 is
finite and still determined by Eq. (5.12) if and only if w < 0 on the interval
(r1, r0]. It is easy to see that

Q(r0, r1; dt)=Q(r1, r0; dt) (5.20)

since for r1 < r0 the characteristic function Oe iwt1{t < .}P is given by the
expression (5.15) with r0 and r1 interchanged.
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Fig. 3. The density function of the exit times for the frozen flow with a=1
2 and c=5. The

dotted curves are the analytical predictions at small and large times, respectively.
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The scaling property (4.2) with s=2 and the fact that the exit time is
infinite with a positive probability depending on r1

r0
imply that

lim
r0 Q 0

Q(r0, cr0; dt)=c(c) d(t) dt (5.21)

for any positive c ] 1 with 0 < c(c) < 1. It follows that the Lagrangian flow
is Richardson. locally trapping and locally transient in the terminology of
Section 2.1.

5.2. Pair Dispersion

The pair dispersion in the model is closely related to the exit time. The
reason is that the solution r(t) of Eq. (5.6) never changes direction. As a
result, the solution that starts at r0 at time zero satisfies r(t) \ r1 \ r0 or
r(t) [ r1 [ r0 if and only if it reaches r1 in time shorter or equal to t. It
follows that

F
.

r1

P(t, r0; dr)=F
t

0
Q(r0, r1; ds) for r1 \ r0, (5.22)

F
r1

0
P(t, r0; dr)=F

t

0
Q(r0, r1; ds) for r1 [ r0 (5.23)

or that

P(t, r0; dr)= + 1“r F
t

0
Q(r0, r; ds)2 dr for r Z r0. (5.24)

The right hand side of Eq. (5.22) is bounded by >.

0 Q(r0, r1; ds) which
tends to zero when r0 Q 0 for r1 > 0 fixed, see Eq. (5.13). It follows that

lim
r0 Q 0

P(t, r0; dr)=d(r) dr, (5.25)

in agreement with the fact that the trajectories are determined by the initial
condition. Hence the Lagrangian flow is deterministic. Note the important
difference with the phase V of the Kraichnan model, see Fig. 1. There the
trapping effects resulted in the coalescence of fluid particles signaled by the
singular form (2.13) of the pair dispersion distribution. With the use of
symmetry (5.20), the left hand side of Eq. (5.23) may be bounded by
>.

0 Q(r1, r0; ds) and hence tends to zero when r1 Q 0 for fixed r0 > 0. As a
result, the distribution P(t, r0; dr) cannot have a contribution proportio-
nal to d(r) for r0 > 0. It is, instead, regular in r. The reason is that in the
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quasi-Lagrangian model of particle separation (5.6), the solutions r(t) are
trapped with probability 1 at positive zeros of w (there is an infinity of such
zeros) and never arrive at r=0. This seems to be an artifact of the frozen
one-dimensional model but it serves as a warning that the behavior of
trajectories in the time-correlated velocities may be richer than what was
observed for the Kraichnan model, with a possible occurrence of phase

VI. deterministic, Richardson, locally trapping, locally transient

characterized by a combination of properties that did not occur in the time-
decorrelated model.

5.3. Case with a ] 1

2

Several of the features analytically established for the one-dimensional
frozen model with the Hölder exponent a=1

2 may be generalized to the
case of general a in the interval (0, 1), although the absence of the Markov
property in the process v(x) makes the arguments more difficult, see ref. 25.
In the limit L Q ., the equation for the trajectory separation still has the
form (5.6) with w(x), x \ 0, being (upon a right choice of the normalization
constant D2) the two-sided fractional Brownian motion ( fBm), i.e., the
Gaussian process with mean zero and 2-point function

Ow(x) w(y)P=1
2 (x2a+y2a − |x − y|2a) — G(x, y) (5.26)

for x, y \ 0. The 2-point function (5.26) is a kernel of a positive operator
on the half-axis [0, .) that we shall denote by G. Note the scale invariance
under w(x) W m−aw(mx) of the fBm. The basic result of ref. 31 asserts that
the probability that w(x) < w0 for w0 > 0 and all x in the interval (0, r0)
behaves like O((r0w−1/a

0 )1 − a) for large values of r0w−1/a
0 . Similarly as for

the Brownian motion, the fBm lives on continuous trajectories and has
zeros in any interval (0, r0) or (r0, .). One may again prove that, with
probability 1, the solution r(t) of Eq. (5.6) starting at any r0 > 0 arrives in
finite time at the closest zero r± to the right or left of r0, see ref. 25.

As in the case a=1
2 , the exit time t through r1 > r0 is finite if and only

if w > 0 on the interval [r0, r1) and the probability O1{t < .}P of such an
event depends only on r1

r0
and tends to zero when r0 Q 0. It should be again

possible to extract the behaviors of the exit time distribution Q(r0, r1; dt)
for large and small time by looking at the large |w| behavior of

Oe ± |w| t 1{t < .}P=Oe ± |w| >r1
r0

dr

w(r) 1{w > 0 on [r0, r1)}P, (5.27)
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where the last expectation is with respect to the Gaussian measure of the
fBm w. For the negative sign, this expression should be still dominated for
large |w| by the semi-classical contribution ’ e−S0. The classical trajectory
w(r)=|w|1/3 r (1+2a)/3

0 (Gu)( r
r0

), where u is a function that does not vanish
only on the interval (1, r1

r0
) and such that

u=(Gu)−2 (5.28)

there. Note that it follows that w(r) > 0 for r > 0 since G(x, y) > 0 except
for x, y=0. The action of the classical trajectory is S0=|w|2/3 r2(1 − a)/3

0 s0

for

s0=F
r1/r0

1

5 1
(Gu)(x)

+
1
2

u(x) (Gu)(x)6 dx. (5.29)

Such a semi-classical dominance implies again the small time tail
’ e− 4

27
r

2(1 − a)
0 s3

0 t − 2
=e−O((ye/t)2) of the density of the exit time distribution

Q(r0, r1; dt) (with the eddy turnover time ye=D−1/2
2 r1 − a

0 ).
With the use of the scale invariance of the fBm, one may also absorb

the |w|-dependence of the characteristic function into the length of the
r-interval in Eq. (5.27):

Oe ± |w| t1{t < .}P=Oe ± >
rŒ1
rŒ0

dr

w(r) 1{w > 0 on [rŒ0, rŒ1)}P, (5.30)

where r −

i=|w|
1

1 − a ri. For the positive sign in Eq. (5.30) and a=1
2 , we have

used the Feynman–Kac formula in order to extract the extensive behavior
of the right hand side for large |w|. For other values of a ¥ (0, 1) such
a formula is not available but the expectation (5.30) may be viewed as
the partition function of a one-dimensional continuous spin system with
long-range 2-spin interactions decaying as distance−2(1+a) and with partially
confining (as opposed to the case with negative sign) single-spin poten-
tial. It is plausible that the extensive behavior of the partition function

’ e−|w|
1

1 − a (r1 − r0) E0 for large |w| with free energy density E0 < 0 persists
for such systems. Such a behavior would result in the long-time tail
’ e−a( 1 − a

|(r1 − r0) E0|
)(1 − a)/a t1/a

=e−O((t/ye)1/a) of the density of the distribution
Q(r0, r1; dt). The validity of this prediction is confirmed by Figs. 4 and 5
where we present the density functions of the exit times for the two cases
a=0.4 and 0.75. The numerical simulations are realized by the same
method previously validated in the case a=1

2 . It requires for a ] 1
2 more

care in the choice of parameters to maximize the scaling window.
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Fig. 4. The density function of the exit times for the 1d frozen velocities with a=0.4 and
c=5. The dotted curve is a fit of the form e−const. t1/a

.

The statistics of the time of exit through r1 < r0 is again obtained
from that for r1 > r0 by interchanging r0 and r1 and the pair dispersion
probability distribution is still given by Eq. (5.24). The remarks about
the phase VI type behavior of Lagrangian flow carry over from the case
a=1

2 .
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Fig. 5. The density function of the exit times for the 1d frozen velocities with a=3/4 and
c=5. The solid curve is a fit of the form e−const. t1/a

. Since the curve gives the visual impression
of an exponential decay, we also show in the inset the log log vs log plot and compare the
slopes 0.75 and 1 to validate the former.
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6. EFFECT OF LONG TIME VELOCITY CORRELATIONS

The presence of permanent trapping of trajectories in one-dimensional
frozen ensemble, leading to events with infinite exit time through r1=cr0,
should also occur in higher-dimensional frozen ensembles obtained by
setting D3=0 in Eq. (3.1). It is plausible that, at least in the presence of
compressibility, the sets of velocities trapping trajectories in a given region
have positive probability. If, however, one reintroduces finite temporal
correlations of velocities by taking positive D3 in (3.1), the particles will
eventually be released from traps after the time evolution changes the
velocity field configuration, i.e., after time of order ycr(r)=D−1

3 r2b for
traps of size r. If for D3 > 0 the exit times are finite so that >.

0 Q(dt)=1,
then the missing mass 1 − >.

0 Q(dt) > 0 for D3=0 should be built from the
long-time tails of the density of Q at positive D3, as the latter is taken to
zero. Loosely speaking, we may then expect that for fixed r0, c, and D2,

Q(r0, cr0; dt) % Q.(c; d(t/ycr)) for t/ycr ± 1. (6.1)

with ycr=ycr(r0) and the density of Q. having a (Poissonian) exponential
tail. Let us concentrate on the one-dimensional situation where the frozen
exit-time density function is expected to have a stretched exponential tail
’ e−O((t/ye)1/a) with the scale set by the eddy turnover time ye=D−1/2

2 r1 − a
0 .

Note that the latter attains the value of order y−1
cr for t=yŒ with yŒ/ye=

O((ln(ycr/ye))a)=O(|ln D3 |a). The ‘‘minimal’’ scenario would be that the
frozen density function passes into the form of (6.1) around t=yŒ. More
precisely, we may postulate the convergence

Q(r0, cr0; dt) 1{t < yŒ} ||0D3 Q 0 Q fr(r0, cr0; dt)

Q(r0, cr0; d(sycr)) 1{s \ yŒ/ycr} ||0D3 Q 0 Q.(c; ds)
(6.2)

in a strong enough sense. The above relations imply that the large exit time
behavior becomes self-similar for small D3, with the characteristic scale
equal to ycr, with no intermediate regime between the frozen type behavior
and the self-similar tail. It is also possible that a different intermediate
regime sets in between times of order yŒ and ycr, with yŒ depending dif-
ferently on D3.

The minimal scenario would make explicit the large t non-uniformity
of the conjectured convergence of the exit time distributions, see (4.5) and
(4.6). Recall that the conjecture was based on the scaling relation that may
be rewritten as the identity

Q(r0, cr0; d(r1 − a
0 t))|D3

=Q(1, c; dt)|D3(r0) (6.3)
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for D3(r0)=r1 − a − 2b
0 D3 and D2 unchanged, see (4.3). When r0 Q . in

domains A and B and r0 Q 0 in domain C then D3(r0) Q 0 so that we fall
into the situation considered in the scenario (6.2). The latter becomes then
the assertion that

Q(r0, cr0; d(r1 − a
0 t)) 1{t < yŒ(r0)} ||0

r0 Q
.

0
Q fr(1, c; dt)

Q(r0, cr0; d(D−1
3 r2b

0 s)) 1{s \ D3(r0) yŒ(r0)} ||0

r0 Q
.

0
Q.(c; ds)

(6.4)

for yŒ(r0)=O(|ln r0 |a).
One of the consequences of such a limiting behavior would be a

bifractal scaling with r0 Q . or r0 Q 0 of the moments of the exit time.
Indeed,

F
.

0
tnQ(r0, cr0; dt)=r (1 − a) n

0 F
yŒ(r0)

0
tnQ(r0, cr0; d(r1 − a

0 t))

+D−n
3 r2bn

0 F
.

D3(r0) yŒ(r0)
snQ(r0, cr0; d(D−1

3 r2b
0 s)). (6.5)

In the regime of extreme values of r0, the first term on the right hand side
behaves like r (1 − a) n

0 >.

0 tnQ fr(1, c; dt) if we assume (6.4) with a sufficiently
strong convergence. Similarly the second term would behave like
D−n

3 r2bn
0 >.

D3(r0) yŒ(r0) snQ.(c; ds). If the density of Q.(c; ds) is integrable at
zero, the first term dominates for negative n and the second one for positive
n when it behaves as O(r2bn

0 ). The ‘‘minimal’’ scenario (6.2) would then
imply that

OtnP=˛O(rn(1 − a)
0 ) for n [ 0,

O(r2bn
0 ) for n \ 0

(6.6)

for large r0 in domains A and B and for small r0 in domain C. Such a
bifractal behavior is, of course, consistent with the earlier conjecture (4.14).
The missing mass in the frozen case would be given by >.

0 Q.(c; ds). Even
in the presence of an intermediate regime in the exit time distribution, the
scaling (6.6) should set in for |n| ± 1. The convexity (concavity) of the
large (small) r0 exponent as a function of n, together with its vanishing at
n=0, would then impose the behavior (6.6) for all n.

We have tested the scenario (6.2) numerically. The one-dimensional
velocity field with temporal correlations was obtained again using the
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Fourier method. Each Fourier mode vk(t) was generated by integrating the
corresponding Ornstein–Uhlenbeck differential equation:

dvk(t)=−
vk(t)
y(k)

dt+12E(k)
y(k)

2
1/2

dwk(t), (6.7)

where y(k) scales as k−2b, the energy spectrum of the field is E(k) 3 k−1 − 2a

and dwk(t) is a standard Brownian motion. The stochastic differential
equations (6.7) were integrated by using a simple Euler scheme of order 1

2 . (26)

The parameters of the flow where a=0.75 and b=0.3. The exit times for
six different initial separations was measured. The density functions
Q(r0, 1.05r0; t) of their distributions are shown in Fig. 6. According to
(6.4), by plotting r1 − a

0 Q versus ra − 1
0 t all the curves should collapse at small

exit times, as confirmed in Fig. 7. Furthermore, the prediction (6.4) at large
exit times is verified in Fig. 8 by collapsing the long-time parts of the curves
by plotting r2b

0 Q versus r−2b
0 t. Note that the curves for the two smallest

values of r0 are not collapsing, in agreement with the previous arguments
predicting that the asymptotic behavior sets in at large r0’s. The simula-
tions are consistent with the absence of an intermediate regime but do not
really allow to exclude such a possibility.
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Fig. 6. The density function Q of the exit times for the flow with a=0.75, b=0.3, and c=1.05
at six initial separations r0=400, 800, 1200, 1500, 1800, 2100. The resolution is 32768.
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to display the collapse at large exit times.
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7. EULERIAN GAUSSIAN VELOCITIES: SWEEPING EFFECTS

Let us discuss how the Lagrangian flow changes if the Gaussian
velocity ensemble 3.1 is used to model the Eulerian velocities rather than
the quasi-Lagrangian ones. As already mentioned, the main difference is
that, unlike for the Kraichnan model, the separation of two trajectories
is not any more a function of velocity differences only and it is strongly
influenced by large-scale eddies or the so called sweeping. This effect grows
with growing integral scale L and we shall attempt to study its large L
asymptotics. It seems to be stronger for small values of b, i.e., for velocities
that are almost frozen at small distances.

The r.m.s. value of velocity in the ensemble (3.1) is proportional to La,
i.e., it becomes large for large L. On the other hand, the r.m.s. equal-time
velocity differences on scales much smaller than L are of the order
distancea. In particular, on the scales ’ La they are of the order La2

° La.
Rewriting the trajectory equation (1.1) as7

7 In principle, we should add the noise to the trajectory but it does not play any role on the
scales that will be discussed.

R(t)=F
t

0
v(s, 0) ds+F

t

0
[v(s, R(s)) − v(s, 0)] ds, (7.1)

we may expect that, for fixed t, the first integral is of the order La and the
second of the order La2

° La. For bounded times, the first integral should
then give the contribution of order La to the solution and the second one,
with R(s) replaced by the approximation ’ La, the term of the order La2

.
More precisely, let us observe that the Gaussian process with the compo-
nents L−av(t, 0) and L−a2

[v(t, Lar) − v(t, 0)] converges in law when L Q .

to the t-independent Gaussian process (v0, w(r)) with the 2-point functions

Ov0 v0P=D2 F
1

kd+2a
1

dk
(2p)d ,

Ow(r) w(rŒ)P=D2 F
(1 − e ik · r)(1 − e−ik · rŒ)

kd+2a

dk
(2p)d ,

Ov0 w(r)P=0.

(7.2)

Note the independence of v0 and w(r). It is then natural to conjecture that
the following convergence in law takes place:
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L−aR(t) ||0L Q .
v0t, (7.3)

L−a2 5R(t) − F
t

0
v(s, 0) ds6||0L Q .

F
t

0
w(v0s) ds. (7.4)

In the frozen case or if a [ b or a > b > a(1 − a), the limits describe the
leading terms in the single trajectory statistics for large L. For b [ a(1 − a),
one should also take into account the term coming from > t

0 [v(s, 0) −
v(0, 0)] ds which is of order La − b. The dominant term of order La in R(t)
describes the ballistic motion with the random velocity of the largest scale
eddies that sweep the Lagrangian particle along. In Appendix E we prove
convergence (7.3) in the frozen one-dimensional model with a=1

2 .
How does the presence of large scale L in Eulerian velocities influence

the Lagrangian particle separation? Let us try to understand this in the one-
dimensional frozen model. We shall consider two particle trajectories x(t)
and x(t)+r(t) starting at time zero at zero and r0 > 0, respectively, and we
shall try to estimate the behavior of their separation r(t). First notice that
r(t) \ 0, i.e., the order of the particles on the line will never change. For
large L, the dominant events are when the velocities of the particles and at
the points between them are all of the order La and of the same sign during
the time interval (0, t). Let us suppose that they are positive, see Fig. 9 (the
case of negative velocities can be treated in a symmetric way).

The crucial fact resulting from the one-dimensional geometry where
the particle order is preserved by the flow is the magic identity

F
r0

0

dr

v(r)
=F

x(t)+r(t)

x(t)

dr

v(r)
. (7.5)

0 x(t) x(t)+ ρ(t)ρ0

v v(x)

Fig. 9. Positions of two right-moving particles in 1d frozen velocity.
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The left hand side is the time Dt that the first particle starting at time
zero at r=0 takes to reach the initial position r0 of the second one. The
right hand side is the time that the second particle takes to go from the
time t position x(t) of the first particle (at which it arives earlier) to its own
time t position x(t)+r(t). The best way to understand that the above times
are equal is by releasing the second particle after the delay Dt so that both
particles move subsequently together. The delay changes nothing in the
movement of the second particle since the velocity field is frozen. The
delayed particle will then be at position x(t) at time t (together with the
first particle) and at position x(t)+r(t) at time t+Dt, which shows that it
takes time Dt to travel from x(t) to x(t)+r(t). Identity (7.5) may be also
established more formally by noticing that the time derivative of its right
hand side vanishes. Writing for large L

x(t)=Lav0t+O(La2
), v(x(t))=Lav0+La2

w(v0t)+O(La3
), (7.6)

see relations (7.3) and (7.4), and anticipating that r(t)=O(1), Eq. (7.5)
may be approximated as

r0

Lav0
=

r(t)

Lav0+La2
w(v0t)

+O(La3 − 2a) (7.7)

from which we infer that

r(t) − r0=La2 − ar0v−1
0 w(v0t)+O(La3 − a). (7.8)

The process w(x) is the fBm with the 2-point function (5.26) (up to nor-
malization). The precise conjecture would then assert the convergence in
law

La(1 − a)[r(t) − r0] ||0L Q .
r0va − 1

0 w(t). (7.9)

Note that the above calculations indicate that not only a single particle
motion, but also the separation of trajectories in the Eulerian frozen one-
dimensional velocity ensemble are dominated by the scale L velocities, i.e.,
by the large eddy sweeping. The effect on the pair dispersion is, however,
inverse to that on the single particle motion. Whereas the latter one
becomes very fast for large L, the trajectory separation becomes essentially
frozen to the initial value in a localization-type effect. It would be interest-
ing to know if such localizing tendency persists in the more general
Eulerian Gaussian ensembles (3.1).

That the sweeping modifies the pair separation statistics for finite L
may be seen in the following way. There is a competition between two
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types of contributions to the dynamics of the pair dispersion r(t). The first
comes from the configurations where the velocity differences at distances of
order r(t) are much smaller than the velocity of each particle. The second
one from the opposite regime. The two contributions may be separated if
we fix the initial velocity v(0) of the first particle, with v(0) < D1/2

2 ra
0 cor-

responding to the first regime and v(0) > D1/2
2 ra

0 to the second one. Denote
by Q(r0, r1; dt | v(0)) the conditional distribution of the exit times for fixed
v(0). In particular, Q(r0, r1; dt | 0) is the quasi-Lagrangian distribution
studied in the L Q . limit in the previous section. As long as r0, r1 ° L
and v(0) ° D1/2

2 La, the conditional distribution should be approximately
L-independent and, consequently, it should satisfy the scaling identity

Q(msr0, msr1; d(mt) | ms − 1v(0)) 4 Q(r0, r1; dt | v(0)) (7.10)

for s= 1
1 − a

. We infer that

Q(r0, r1; dt | v(0)) 4 Q(1, c; d(ra − 1
0 t) | r−a

0 v(0)). (7.11)

where, as usually, c=r1
r0

. Deep in the regime v(0) < D1/2
2 ra

0 the distribution
Q(r0, r1; dt | v(0)) is then essentially quasi-Lagrangian. As for the opposite
regime, we may use the magic formula (7.5) with r(t)=cr0. Deep in that
regime, the fluctuations of v(r) in both integrals are small and Eq. (7.5)
reduces to the approximate identity

v(x(t)) 4 cv(0) (7.12)

from which r0 dropped out and which states that the exit time t is the first
time when the velocity on the trajectory of the first particle reaches the
value cv(0). In the scaling regime, we obtain then

Q(r0, r1; dt | v(0)) 4 Q sc(c; d(v(0)1 − 1/a t)) (7.13)

which is consistent with (7.11) in the crossover region v(0)=O(ra). Even
for v(0) N D1/2

2 La where the scaling breaks, the r0-independence of
Q(r0, r1; dt | v(0)) persist so that the contribution of the region v(0) >
D1/2

2 ra
0 to the moments of exit time is approximately r0-independent for

fixed c. On the other hand, the contribution of the quasi-Lagrangian
regime v(0) < D1/2

2 ra
0 to the nth-moment is approximately proportional to

F
D1/2

2 r
a
0

0
dv(0) F tnQ(r0, cr0; dt | v(0)) 4 D1/2

2 ra+n(1 − a)
0 F tnQ(1, c; dt | 0).

(7.14)
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Fig. 10. Scaling exponents of exit-time moments in Eulerian 1d simulations for two different
box sizes. Illustration of the sweeping effects.

It dominates for small r0 if n < − a

1 − a
. Altogether, we then expect that in the

frozen one-dimensional Eulerian model and for small r0,

Otn1{t < .}P=O(rzn
0 ) with zn=˛a+n(1 − a) for n [ − a

1 − a
,

0 for n \ − a

1 − a
,

(7.15)

i.e., again a bifractal situation. The prediction seems to be confirmed, at
least for large |n|, by numerical simulations, see Fig. 10 where the the
scaling exponents for two sizes of the periodic box are plotted.

APPENDIX A

We gather here several explicit formulae for the exit time distribution
in the Kraichnan model and discuss in more detail some of their properties
mentioned in the main text.

For t=2 and L=., i.e., in the smooth case with scaling,

Q(r0, r1; dt)=
|ln(r1/r0)|

`4pD −

1t3
e

− 1
4DŒ1t

(ln(r1/r0) − lt)2

dt

=
|ln(r1/r0)|

`4pD −

1t3
e

l ln(r1/r0)

2DŒ1 e
− 1

4DŒ1t
ln2(r1/r0) − l2

4DŒ1
t
dt, (A.1)
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as given by Eq. (2.16) with the use of the explicit expression for the
Dirichlet heat kernel

e−tMD(r0, r)=
1

`4pD −

1t r
(e

− 1
4DŒ1t

(ln(r/r0) − lt)2

− e
l

DŒ1
ln(r1/r0) − 1

4DŒ1t
(ln(rr0/r

2
1) − lt)2

).
(A.2)

Note the decay ’ e− 1
4DŒ1t

ln2(r1/r0) of the density of Q(r0, r1; dt) for small t and
its exponential tail ’ e− l2

4DŒ1
t for large t indicating the non-Gaussian charac-

ter of small and large fluctuations of t. For the conditional moments of the
exit time, one obtains:

OtnPc=
|l|

`pD −

1

1 |ln(r1/r0)|
|l|

2n+1
2
e

|l ln(r1/r0)|

2DŒ1 K|n+1
2
|
1 |l ln(r1/r0)|

2D −

1

2

= C
|n − 1

2
| − 1

2

k=0

(|n − 1
2 | − 1

2+k)!
k! (|n − 1

2 | − 1
2 − k)!

1D −

1

l2
2k 1 |ln(r1/r0)|

|l|
2n − k

, (A.3)

where the first expression with the Bessel function holds for all real n and
the second one for integer n. The unconditioned moments diverge for n > 0
if l ln(r1/r0) < 0 due to the finite probability of infinite exit times. The
conditional characteristic function has the form:

Oe iwtPc=1r1

r0

2 ± l

DŒ1
( 1

2
− `1

4
− i

DŒ1w

l2
)

, (A.4)

where the square root is taken with the positive real part and the sign is
that of l ln(r1/r0). The decay ’ e−|ln(r1/r0)| `|w|/D−

1 at large |w| along the
positive imaginary axis and the presence of the singularity at w=−i l2

4D −

1
reflect the small and large t behavior of the density of Q(r0, r1; dt).

For 0 < t < 2 and L=., i.e., in the non-smooth case with scaling,

(MD − iw)−1 (r0, r)

=
1

D −

1

W−1ra − tf+ (r1)−1

·˛f+ (r0)(f±(r) f+ (r1) − f+ (r) f±(r1)) for r0 [ r,
f+ (r)(f±(r0) f+ (r1) − f+ (r0) f±(r1)) for r0 \ r

(A.5)

on the interval [0, r1] with the upper sign pertaining to the weakly com-
pressible ^ < d

t2 region and the lower one to the strongly compressible one
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^ \ d
t2 . Functions f± are the two independent solutions of the eigenfunc-

tion equation (M − iw) f=0 expressed by the Bessel functions:

f±(r)=r
1 − a

2 J± b
1 2

2 − t
=iw

D −

1

r2 − t2 (A.6)

and

W=ra(f±(r) “r f+ (r) − f+ (r) “r f±(r)) (A.7)

is their r-independent Wronskian. The eigenfunction f+ (f− ) satisfies the
singular Dirichlet (Neumann) condition at the origin imposed by the limit
when the trajectory noise is turned off for weak (strong) compressibility,
see ref. 23. Equation (2.19) implies that

Oe iwt1{t < .}P=
f+ (r0)
f+ (r1)

. (A.8)

For w Q 0 the eigenfunction f− reduces to a constant whereas f+ becomes
proportional to r1 − a resulting in relation (2.23).

For the conditional characteristic function, one obtains

Oe iwtPc=1r0

r1

2+
a − 1

2
J+ b

1 2
2 − t

= iw
D −

1

r2 − t
0

2

J+ b
1 2

2 − t
= iw

D −

1

r2 − t
1

2
. (A.9)

The moments of the exit times may be derived from this expression by
expanding the right hand side in powers of w. In particular, one obtains for
the conditional average of the exit time the result:

OtP
c =

(r1/r0)2 − t − 1
(2 − t)(2 − t + (1 − a)) D −

1

r2 − t
0 (A.10)

which reproduces in the t Q 2 limit the n=1 version of Eq. (A.3). The
higher order moments OtnPc are proportional to rn(2 − t)

0 if r1
r0

is kept con-
stant. The decay 3 e−O(`|w| ) of the absolute value of the right hand side
of Eq. (A.9) at large positive or negative w guarantees that the exit time
distribution Q(r0, r1; dt) has a smooth density. Since the latter is zero for
negative t, it must vanish with all derivatives at t=0. More exactly, the
decay ’ e−b1 `|w| of the characteristic function (A.9) along the positive
imaginary axis of w, with b1=2(2 − t)−1 (D −

1)−1/2 (r (2 − t)/2
1 − r (2 − t)/2

0 ),
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signals the behavior ’ e−
b2

1
4t of the density of Q(r0, r1; dt) for small t. The

analyticity properties of the right hand side of (A.9) imply the exponential
decay ’ e−b2t of the density of Q(r0, r1; dt) for large t, with the rate
b2=1

4 (2 − t)2 D −

1rt − 2
1 x2

0 where x0 is the (real) zero of J+ b(z) closest to the
origin. In this respect, the exit time distribution Q(r0, r1; dt) behaves
similarly for weak and for strong compressibility, the main difference
between the two cases consisting in the missing mass in the latter case.

For r1 < r0, the statistics of the time of exit through r1 is related to
the resolvent kernel of the generator MD on the interval [r1, .). For
0 < t < 2, the latter is given by a formula like (A.5) but with the overall
minus sign, the cases r0 [ r and r0 \ r interchanged, and the functions
f+ , f± replaced by the Hankel functions

f (i)(r)=r
1 − a

2 H (i)
b
1 2

2 − t
= iw

D −

1

r2 − t2 (A.11)

for i=1, 2, respectively. The square root in the argument of the Hankel
functions should be taken with the positive imaginary part so that it is the
eigenfunction f (1) which has a stretched exponential decay for large r. For
the characteristic function of the exit time, Eq. (2.19) gives:

Oe iwt1{t < .}P=
f (1)(r0)
f (1)(r1)

. (A.12)

When w Q 0, the eigenfunction f (1) becomes proportional to r1 − a if a > 1,
i.e., if b < 0 or ^ < d − 2

2t
+1

2 and to a constant if a [ 1, i.e., if b \ 0 or
^ \ d − 2

2t
+1

2 , resulting in relation (2.24).
The conditional characteristic function is given by the expression

Oe iwtPc=1r0

r1

2
|1 − a|

2
H (1)

b
1 2

2 − t
= iw

D −

1

r2 − t
0

2

H (1)
b
1 2

2 − t
= iw

D −

1

r2 − t
1

2
. (A.13)

Again, its absolute value decays as e−O(`|w| ) for large |w| implying that
Q(r0, r1; dt) has a smooth density that vanishes with all derivatives at the
origin. More exactly, the decay ’ e−b1 `|w| of (A.13) along the positive
imaginary axis, where b1 is as for r1 > r0 but with r0 and r1 interchanged,

implies again the behavior ’ e−
b1

2

4t of the density of the exit time distribution
Q(r0, r1; dt) for small t. Since H (1)

b (z) is a combination of z ± b with coeffi-
cients that are entire functions of z2 (for non-integer b), it follows that
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Oe iwtPc has the nth derivative over w at the origin if (and only if ) n < |b|.
That implies that for r1 < r0 the density of Q(r0, r1; dt) has a power decay
for large t, unlike for r1 > r0 where it decayed exponentially. This leads to
even more non-Gaussian large deviations of the exit time.

APPENDIX B

We shall establish here the estimate (5.9) on the average time, given by
Eq. (5.8), that the trajectory takes to reach the first zero of the Brownian
motion w(r) between r0 and r2. To this end, let us note that for d > 0,

F
.

0
e

−
(w+w2)2

2(r2 − r)
`2 dw2

`p(r2 − r)
[ `2 e

− w2

4(r2 − r)

[ `2 1 r2

r2 − r
2d

e
− w2

4(r2 − r)

[ `2 (4d)d e−d
rd

2

w2d
, (B.1)

where the last inequality follows from xe−x [ e−1. Employing the bound
(B.1) for 0 < d < 1/2 and extending the integral over r in (5.8) to infinity
with the use of the identity

F
.

r0

(e
−

(w0 − w)2

2(r − r0) − e
−

(w0+w)2

2(r − r0) )
dr

`2p(r − r0)
=w0+w − |w0 − w|, (B.2)

we obtain

Ot+ 1{w(r0) > 0, r+ [ r2}P

[ `2 (4d)d e−drd
2 F

.

0
e

−
w2

0
2r0

dw0

`2pr0

F
.

0

(w0+w − |w0 − w|) dw
w1+2d

=
(2d)d e−dC(1 − d)

`p d(1 − 2d)
r1/2 − d

0 rd
2. (B.3)

The minimization over d gives the inequality (5.9).

APPENDIX C

The constraint moments of the exit time (5.12) in the frozen one-
dimensional model with a=1

2 and L=. take the form
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Otn1{t < .}P=n! F
r0 [ rŒ [ · · · [ r(n) [ r1

drŒ · · · dr (n) F
.

0
e

−
w2

0
2r0

dw0

`2pr0

· D
n

i=1
F

.

0
(e

− (w(i − 1) − w(i))2

2(r(i) − r(i − 1)) − e
− (w(i − 1)+w(i))2

2(r(i) − r(i − 1)) )
dw (i)

`2p(r (i) − r (i − 1)) w (i)

· F
.

0
(e

−
(w(n) − w1)2

2(r1 − r(n)) − e
−

(w(n)+w1)2

2(r1 − r(n)) )
dw1

`2p(r1 − r (n))
(C.1)

with r(0) — r0 and w(0) — w0. It is easy to show that the expression on the right
hand side is finite. Indeed, bounding the last integral by `

2
p(r1 − r(n))

w (n) as in
estimating (5.10) and proceeding further the same way, we obtain the
inequality

Otn1{t < .}P [
1
p
12

p
2n/2

`r0 n! F
r0 [ rŒ [ · · · [ r(n) [ r1

drŒ · · · dr (n)

`(rŒ − r0) · · · (r1 − r (n))

[
2n

`2p

n!
(n − 1)!!

1r1

r0
− 12

n − 1
2

r
n
2
0, (C.2)

where the last line results from the inductive calculation of the r (i)

integrals.

APPENDIX D

This appendix is devoted to the spectral analysis of the operator K−

given by Eq. (5.19) and pertaining to the long-time behavior of the d=1,
a=1

2 exit times. The two eigen-solutions of K− corresponding to an eigen-
value l may be expressed by the Whittaker functions

kl(w)=M 1

` − 2l
, 1

2
(2 ` − 2l w), jl(w)=W 1

` − 2l
, 1

2
(2 ` − 2l w). (D.1)

The spectrum of K− on the positive half-line and with the Dirichlet
boundary condition at the origin is composed of the half-line [0, .)
(continuous spectrum) and of discrete negative eigenvalues En=− 1

2n2 for
n=1, 2,... corresponding to the bound states in the attractive potential.
The eigenfunctions in the spectrum are kE(w) where in (D.1) for E > 0 we
choose the square root with positive imaginary part and for E=En the
positive one. These functions vanish at zero. They are imaginary and
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oscillating at infinity for E > 0. For E=En, they are real and decaying
exponentially. In the latter case, the two eigen-solutions (D.1) become
proportional and may be expressed by the Laguerre polynomials, similarly
as for the three-dimensional Schrödinger operator in the attractive Coulomb
potential:

Mn, 1
2

12
n

w2=
(−1)n − 1

n!
Wn, 1

2

12
n

w2

=
2
n2 we− 1

n wL1
n − 1

12
n

w2=
1
n!

ez/2 dn − 1

dzn − 1 (zne−z)|z=2
n w . (D.2)

The resolvent kernel of K− takes the form

(K− − l)−1 (w0, w1)=
2
W

˛kl(w0) jl(w1) for w0 [ w1,

jl(w0) kl(w1) for w0 \ w1,
(D.3)

with the Wronskian

W=jl(w) “wkl(w) − kl(w) “wjl(w)=2 ` − 2l/C(1 − 1

` − 2l
), (D.4)

where in the expression for the resolvent the square roots are taken positive
for l sufficiently negative and continued analytically to the other values of
l outside the spectrum. The discrete eigenvalues En appear as poles in the
right hand side of (D.3) with the residue

− ` − 2En kEn
(w0) kEn

(w1) (D.5)

originating in the zeros of the Wronskian. Along the positive axis of l, the
right hand side of (D.3) has a cut

pi
E

(1 − e
− 2p

`2E )−1 kE(w0) kE(w1). (D.6)

It follows that the spectral density of K− has the form

n(E)= C
.

n=1
` − 2En d(E − En)+

1
2E

(1 − e
− 2p

`2E )−1 (D.7)

688 Chaves et al.



and that

F
.

0
e−|w|2 (r1 − r0) K− (w0, w1) dw1

= C
.

n=1
e

|w|2 (r1 − r0)

2n2 1
n

Mn, 1
2

12
n

w0
2 F

.

0
Mn, 1

2

12
n

w1
2 dw1

− F
.

0
dw1 F

.

0

e−|w|2 (r1 − r0) E

2E(1 − e− 2p

`2E )
M 1

i `2E
, 1

2
(2i `2E w0) M 1

i `2E
, 1

2
(2i `2E w1) dE.

(D.8)

Substituting this expression to Eq. (5.18), one can see that the contribution
of the ground state of K− dominates for w=−i |w| and large |w| so that

Oe iwt1{t < .}P=
2 `2

`pr0 |w|
e

|w|2 (r1 − r0)

2 (1+O(|w|−2). (D.9)

APPENDIX E

As an illustration to Section 7, we shall prove here the convergence
(7.3) for the one-dimensional frozen case of the Gaussian ensemble (3.1)
of Eulerian velocities with a=1

2 . Using the scaling properties of the frozen
velocities, both x(t) and v0 may be realized on the same probability space
corresponding to the velocity process ṽ(x) with L=1. This is done by
setting

x(t)=Lx̃(L− 1
2 t), v0=ṽ(0), (E.1)

where x̃(t) is the Lagrangian trajectory in the field ṽ(x) such that x̃(0)=0.
We shall prove the (stronger) convergence (3.1) in the L2-norm on the
probability space of ṽ:

O[L
1
2 x̃(L− 1

2 t) − ṽ(0) t]2P||0L Q .
0. (E.2)

If ṽ(0) > 0 then x̃(t) > 0 and, symmetrically, if ṽ(0) < 0 then x̃(t) < 0. The
contributions of the two cases to the expectation (E.2) are equal so let us
study the case ṽ(0) > 0. It will be more convenient to estimate the expecta-
tions of the exit time t̃(x) of x̃ through x > 0 related to x̃(t) by the identity

1{x̃(t) \ x}=1{t̃(x) [ t}. (E.3)
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Since t̃(x)=>x
0

dy
ṽ(y) if ṽ > 0 on [0, x) and is infinite otherwise, we have easy

bounds

1{ṽmin \ x/t} [ 1{t̃(x) [ t} [ 1{ṽav \ x/t} (E.4)

with ṽmin being the minimum of ṽ on the interval [0, x] and ṽav=1
x >x

0 ṽ its
average value. Now, with the use of the identity (E.3) and integration by
parts, the L2-norm on the left hand side of (E.2) may be rewritten as

4 F
.

0
xO1{t̃(L

− 1
2x) [ L

− 1
2t}P dx − 4t F

.

0
O1{t̃(L

− 1
2x) [ L

− 1
2t} ṽ(0)P dx+t2Oṽ(0)2P.

(E.5)

From the explicit expressions for the Gaussian field expectations, it follows
that, for ṽmin and ṽav standing now for the minimum and the mean of ṽ on
the interval [0, L− 1

2 x],

lim
L Q .

O1{ṽmin \ x/t}P= lim
L Q .

O1{ṽav \ x/t}P=O1{ṽ(0) > x/t}P, (E.6)

so that also

lim
L Q .

O1{t̃(L
− 1

2x) [ L
− 1

2t}P=O1{ṽ(0) > x/t}P (E.7)

and similarly with the insertion of ṽ(0). It is also easy to show a uniform in L
bound O1{ṽmin \ x/t}P [ e−C(x/t)2

. From the Dominated Convergence Theorem,
the limit of (E.5) is then equal to the expression

4 F
.

0
xO1{ṽ(0) \ x/t}P dx − 4t F

.

0
O1{ṽ(0) \ x/t} ṽ(0)P dx+t2Oṽ(0)2P (E.8)

which vanishes in a Gaussian ensemble. Generalization of this proof to the
case with a ] 0 does not pose much problem.
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22. K. Gawȩdzki, Turbulent advection and breakdown of the Lagrangian flow, in Intermit-
tency in Turbulent Flows, J. C. Vassilicos, ed. (Cambridge University Press, Cambridge,
2001), pp. 86–104.
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